සියළුම හිමිකම් ඇවිරිණි / All Rights Reserved]

බස්නාහිර පළාත් අධනාපන දෙපාර්තමේන්තුව மேல் மாகாணக் கல்வித் திணைக்களம் 🖼 🖼 🖼 **Department of Education - Western Province**

අධාsයන පොදු සහතික පතු (උසස් පෙළ) විභාගය 2025 නොවැම්බර් උපකාරක පුශ්න පතුය General Certificate of Education (Adv. Level) Exam, November 2025 Supportive Seminar Paper

රසායන විදාහාව II Chemistry II

13 ශේණිය Grade 13

පැය තුනයි Three hours

Index number : –

Extra reading time 10 minutes

- Periodic table is provided.
- Use of calculators is not allowed.

Universal gas constant $R = 8.314 \, \mathrm{JK^{-1} \, mol^{-1}}$ $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ * Avagadro constant

In answering the paper, you may represent alkyl groups in a condensed manner.

Example :
$$H = \begin{bmatrix} H & H \\ - C & C \\ H & H \end{bmatrix}$$
 group can be represented as $CH_3CH_2 - H$

\Box PART A – Structured Essay (pages 02 - 09)

- * Answer all the questions on the question paper itself.
- * Write your answers in the space provided for each question. Please note that the space provided is sufficient for the answer and the extensive answers are not expected.

\square PART B and PART C - Essay (pages 10-18)

- Answer four questions selecting two questions from each part. Use the papers supplied for this purpose.
- * At the end of the time allotted for this paper, tie the answers to the three Parts A, B and C together so that Part A is on top and hand them over to the Supervisor
- You are permitted to remove only Parts B and C of the question paper from the examination Hall.

For Examiner's Use Only

Part	Part Question No.	
	1	
A	2	
A	3	
	4	
	5	
В	6	
	7	
	8	
C	9	
	10	
Total		

	Total
In Numbers	
In Letters	

Code Numbers

Total

Marking Examiner 1	
Marking Examiner 2	
Checked by:	
Supervised by:	

Part A - Structure and essay

Answer all four questions in this paper. (Each question carries 100 marks.)

01. (a) Write on the dotted lines, whether the following statements are **true** or **false**.

(i) Among all the elements in the periodic table, F has the most negative electron-gaining energy

False

(ii) Li salts give crimson-red for the flame test

True

(iii) The decomposition of (NH₄)₂CO₃ produces a white powder (iv) HCOONa(aq) is act as a buffer solution

False False

(v) Cl₂BrO₂⁺ ion is tetrahedral in shape

True

(vi) As the nuclear charge of isoelectronic ions increases, the ionic radius

True

* If (T or F) or $(\sqrt{\text{or } X})$ written instead of True or false in word deduct 1 mark each (4x6=24 marks)

24

Do not writ anything in

this column

(b) (i) State the shape around the atoms marked C¹, N, and C² in the structure shown below and their valence in the table.

$$\begin{array}{c}
H \\
H - C - N = C = O \\
H
\end{array}$$

 Atom	Shape around the atom	Valence
C^1	Tetrahedral	4
N	Bent / V shape/ Angular	3
C^2	Linear	4

If + or - written for valance no marks

(1x6 = 6 marks)

(ii) Draw the most acceptable Lewis dot-dash structure for molecule C₄H₅NO. Its template is shown below.

$$H - C - C = C - N = C = 0$$

(iii) Draw two more Lewis dot-cross (resonance) structures that can be drawn for the stable Lewis structure drawn in (ii) above.

Identify whether the structures you drew are unstable or stable and indicate that under each structure.

$$H = H = H = H = C = O$$

Unstable

Any 2 structures $(2+1) \times 2 = 6$

(iv) Complete the given table based on the following Lewis dot-cross structure and its labeled skeleton.

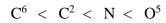
	H-C≡C—C—O—C=C	$-\stackrel{\bullet}{N}_{H_2} H_1-$	$C^2 - C^3 - C^4$	$-O^{5}-C^{6}-$	H^8 C^7 NH_2
		C^2	\mathbb{C}^4	O^5	N
I	Number of VSEPR pairs around the atom	2	3	4	4
II	Electron pair geometry around the atom	Linear	Trigonal planner	Tetrahedral	Tetrahedral
III	shape around the atom	Linear	Trigonal planner	Bent / V shape/ Angular	Pyramidal
IV	Hybridization of the atom	sp	sp^2	sp ³	sp ³
V	The oxidation number of the atom	-1	+3	-2	-3

(1x20 = 20 marks)

- Parts (v) to (viii), based on the Lewis dotted line structure given in part (iv) above. Atom labeling is the same as in part (iv).
 - (v) Identify the atomic/bond orbitals involved in the formation of σ bonds between the following two atoms.

I	$H^1 - C^2$	\mathbf{H}^1 1s	* no marks for s only	\mathbb{C}^2	sp
II	$C^2 - C^3$	\mathbb{C}^2	sp	\mathbb{C}^3	sp
III	$C^3 - C^4$	\mathbb{C}^3	sp	\mathbb{C}^4	sp^2
IV	C^4-O^5	\mathbb{C}^4	sp^2	O^5	sp ³ no marks for 2p
V	$O^5 - C^6$	O^5	sp^3	C^6	sp^2
VI	C^7 - N	\mathbf{C}^7	sp^2	N	sp^3

- * No marks for sp_2 or sp_3 deduct maximum 5 marks from total for wrong representation of the symbol (1x12 = 12 marks)
- (vi) Identify the atomic/bond orbitals involved in the formation of π bonds between the following two atoms.


I	$C^2 - C^3$	C^2	2p	\mathbb{C}^3	2p
		C^2	2p	\mathbb{C}^3	2p
II	C^4-O^{10}	C^4	2p	${ m O}^{10}$	2p
III	$C^6 - C^7$	C^6	2p	C^7	2p
					_ 、

(1x8 = 8 marks)

(vii) State the approximate bond angles around the C^2 , C^4 , O^5 and N atoms.

 C^2 180°, C^4 120° ± 1, O^5 104° ± 1, N 107° ± 1 (1x4 = 4 marks)

(viii) Arrange the O⁵, C² C⁶ and N atoms in order of increasing electronegativity.

(4 marks)

64

$$\frac{1}{\lambda} = R_H \left(\frac{1}{n_2^2} - \frac{1}{n_1^2} \right) \begin{bmatrix} \lambda = \text{Wave length of the photon} & n_1 = \text{Initial energy level} \\ n_2 = \text{Final energy level} \\ R_H = 1.097 \text{ x } 10^7 \text{ m}^{-1} \end{bmatrix}$$

(i) Find the wavelength in nano meters of the photon emitted when an electron moves from the fourth energy level to the second energy level in a Hydrogen atom.

Clue -:
$$(1.097 \times 10^7 \times 0.1875)^{-1} = 4.86 \times 10^{-7}$$

$$\frac{1}{\lambda} = 1.097 \times 10^7 \left[\frac{1}{2^2} - \frac{1}{4^2} \right] \quad (4 \text{ marks})$$

$$\lambda = \left(1.097 \times 10^7 \times 0.1875 \right)^{-1} = 486 \text{ nm} \quad (2 \text{ marks})$$

(ii) An electron in the Hydrogen atom falls from a certain energy level to another certain energy level by emitting a radiation with wavelength (λ) = 1.025 x 10⁻⁷ m. This transition falls into Lyman series, Find the initial energy level of the electron.

Clue -:
$$(1.025)^{-1} = 0.9756$$
, $\left(\frac{0.9756}{1.097}\right) = 0.889$, $(9)^{-1} = 0.111$

$$\frac{1}{1.025 \times 10^{-7}} = 1.097 \times 10^{7} \left[\frac{1}{1} - \frac{1}{n^{2}}\right] \quad (4 \text{ marks})$$

$$0.889 = \left(1 - \frac{1}{n^{2}}\right) = > \frac{1}{n^{2}} = 0.111$$

$$n^{2} = 9 : n = 3 \quad (2 \text{ marks})$$

- **02.** (a) X, Y and Z are three elements belonging to p block which are non-gaseous at room temperature and, having atomic number less than 20, existing as allotropic forms in nature Only a common allotropic form (A) of element X conducts electricity. Only chlorides of elements Y and Z undergo hydrolysis, and chloride of Z hydrolyzes to give a cloudy solution and a gas (B) with a pungent smell that decolorizes the color of an acidified K₂Cr₂O₇ solution. Element Z undergoes disproportionation when reacted with dilute NaOH. Element Y reacts with dilute NaOH to give a colorless gas with a pyramidal shape and a sodium salt in which the ratio of H, Y and O atoms is 2:1:2 respectively.
 - (i) Identify the elements X, Y and Z X - C Y - P Z - S (5x3 = 15 marks)
 - (ii) Identify the allotropic form A and name another common allotropic form of element X

(iii) Draw a sketch for the atomic arrangement of A and explain why A conducts electricity with the aid of its atomic structure.

Each carbon atom in **graphite is sp^2 hybridized**. Three of its four valence electrons form σ (sigma) bonds with neighboring carbon atoms in the same plane.

The fourth electron remains in a p orbital, which overlaps with neighboring p orbitals above and below the plane to form a delocalized π -electron cloud.

These delocalized electrons are free to move across the layers. Therefore, graphite conducts electricity parallel to the layers due to the mobility of delocalized π -electrons.

Flat layer of carbon atoms

Flat layer of carbon atoms

Strong bonds exist between atoms atoms atoms opening and atoms opening at layer of carbon atoms

(2 marks for diagram 2 marks for reason = 4 marks)

12

anything in

this column

/100 \

100

(iv) Write the balanced chemical equations for the hydrolysis of chlorides of elements Y and Z.

Y- With less amount of water $PCl_5 + H_2O \rightarrow POCl_3 + 2 HCl$ (3 marks)

Y- With excess amount of water $PCl_5 + 4 H_2O \rightarrow H_3PO_4 + 5 HCl$ (3 marks)

Z- $SCl_2 + 2 H_2O \rightarrow S + SO_2 + 4HCl$ (3 marks)

(v) Write the balanced chemical equations for the reaction between B gas and acidified K₂Cr₂O₇ solution

$$H_2SO_4 + 3 SO_2 + K_2Cr_2O_7 \rightarrow Cr_2(SO_4)_3 + K_2SO_4 + H_2O$$
 (5 marks)

(vi) Write the balanced chemical equations for the reaction between dil.NaOH solution and element Y and Z

Y-
$$\begin{array}{c} 3 \text{ H2O} + 3 \text{ NaOH} + 4P \rightarrow 3 \text{ NaH2PO2} + PH_3 & (3 \text{ marks}) \\ \{ P \rightarrow PH_3 \text{ , } P \rightarrow H2PO2^- \text{ disproportionation} \} \\ \text{Z-} & 6 \text{ NaOH} + 3S \rightarrow 2 \text{ Na2S} + \text{Na2S2O3} + 3 \text{ H2O} & (3 \text{ marks}) \\ \end{array}$$

(b) The experiments and their observations on salt A are shown in the table below

	Experiment	Observation
T	BaCl ₂ (aq) was added to the aqueous	Obtained the white precipitate B , which is
1	solution containing salt A	insoluble in HNO ₃
	NaOH (aq) was added to the aqueous	A white precipitate, C, was formed which
II	solution containing A	turned blackish brown precipitate D when
	_	kept in air
TTT	H ₂ S (g) was added to the alkalized	Obtained a pinkish E precipitate, which is
III	aqueous solution containing A.	soluble in dilute HNO ₃ .

(i) Identify the compounds A, B, C, D, and E.

A - MnSO₄ B - BaSO₄ C - Mn(OH)₂

 $D-MnO_2 E-MnS (4x5=20 marks)$

(ii) Salt A is used for a common test for quantitative analysis under alkaline conditions.

What is the relevant test and the purpose of performing the test?

Test – Winkler test (3 marks)

Purpose – detect dissolved Oxygen in a water sample (2 marks)

(iii) Write balanced chemical equations for each reaction ${\bf I}$ to ${\bf III}$ above

 $I \qquad \qquad MnSO_4 + BaCl_2 \rightarrow MnCl_2 + BaSO_4 \downarrow \qquad (5 marks)$

Obtaining a white precipitate $MnSO_4 + 2 NaOH \rightarrow Na_2SO_4 + Mn(OH)_2$ (5 marks)

Turned blackish brown when kept in air 2 $Mn(OH)_2 + O_2 \rightarrow 2 \ MnO_2 + 2 \ H_2O$ (5 marks)

III Obtaining a pinkish precipitate $MnSO_4 + H_2S \rightarrow MnS + H_2SO_4$ (5 marks)

(iv) Give the chemical formulae of five oxides of metal **A** and write the nature of each of the oxides as basic, weakly basic, amphoteric, weakly acidic and acidic

oxide	nature of oxide
MnO	Basic
Mn ₂ O ₃	weakly basic
MnO ₂	amphoteric

oxides	nature of oxide
MnO ₃	weakly acidic
Mn ₂ O ₇	acidic

(1x10=10 marks)

^

55

 $\begin{array}{|c|c|}
\hline
100 \\
\hline
100
\end{array}$

Chemistry – AL 2025

II

anything in this column

Do not writ

45

Do not writ anything in this column

- **03.** (a) Dissolve 5 g of a solid sample containing NaOH and Na₂CO₃ in pure hot water to make a 100 cm³ solution. 25.00 cm³ of that solution was titrated with 1.0 moldm⁻³ HCl solution with phenolphthalein as an indicator and the burette reading was observed as 20.00 cm³. Another volume of 25.00 cm³ of the above solution was titrated with 1.0 moldm⁻³ HCl solution using methyl orange as an indicator and obtained burette reading was 25.00 cm³.
- (i) Write the balanced chemical equations for the reaction that take place in the first titration.

$$\begin{aligned} NaOH(aq) &+ HCl \, (aq) \rightarrow NaCl \, (aq) + H_2O(l) \\ Na_2CO_3(aq) &+ HCl(aq) \rightarrow NaHCO_3(aq) + H_2O(l) \end{aligned} \tag{4x2=8 marks}$$

(ii) Write all the balanced equations for the reactions taking place in the second titration

$$NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H2O(l)$$

$$Na2CO3(aq) + HCl(aq) \rightarrow NaHCO3(aq) + H2O(l)$$

$$NaHCO3(aq) + HCl(aq) \rightarrow NaCl(aq) + CO2(g) + H2O(l)$$

$$(4x3=12 \text{ marks})$$

(iii) What is the difference between the two burette readings in two titrations?

5 cm³

(5 marks)

(iv) What can you calculate from the volume of HCl in question (iii) above

(v) Calculate the mass percentages of NaOH and Na₂CO₃ present in the mixture

Let x be the moles of NaOH and y be the moles of Na₂CO₃

$$for 25cm^{3}$$

$$x + y = \frac{1}{1000} \times 20$$

$$x + 2y = \frac{1}{1000} \times 20$$

$$x + 2y = \frac{1}{1000} \times 20$$

$$x + 2y = \frac{1}{1000} \times 20$$

$$x = \frac{60}{1000} \times 30$$

$$x = \frac{60}{1000} \times 30$$

$$x = \frac{20}{1000} \times 30$$

$$x = \frac{20}{1000} \times 30$$

$$x = \frac{20}{1000} \times 30$$

$$x = 34.4\%$$

$$x = \frac{5}{1000} \times 30$$

$$x = \frac{15}{1000} \times 30$$

$$x = \frac{60}{1000} \times 40 \times \frac{100}{5} = 48\% \times 30$$

$$x = \frac{5}{1000} \times 30$$

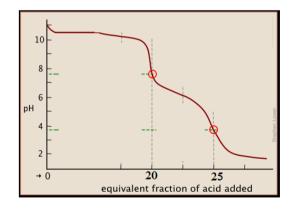
$$x = \frac{15}{1000} \times 30$$

$$x = \frac{60}{1000} \times 40 \times \frac{100}{5} = 48\% \times 30$$

$$x = \frac{5}{1000} \times 30$$

$$x = \frac{15}{1000} \times 30$$

$$x = \frac{60}{1000} \times 40 \times \frac{100}{5} = 48\% \times 30$$

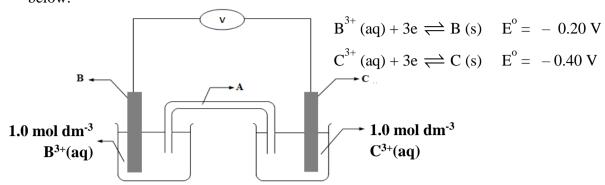

$$x = \frac{5}{1000} \times 30$$

$$x = \frac{15}{1000} \times 30$$

$$x = \frac{60}{1000} \times 40 \times \frac{100}{5} = 48\% \times 30$$

$$x = \frac{15}{1000} \times 30$$

(vi) Sketch graph for the change in pH of the solution with the volume of HCl in the titration


First eq point between pH 8-10 = 1 mark 2^{nd} eq point less t han pH 7 = 1 mark Correct two axis = 1x2 = 2 marks Shape of the curve = 1 mark

(5 marks)

Do not write anything in this column

(b) Following diagram shows a galvanic cell kept at 25 °C and 1 atm pressure consist of half cells B and C. The relevant reduction potential values are given. Answer the questions given below.

(i) Identify the component A and state two primary functions of A.

(3 marks)

Primary functions of A

- * Maintains electrical neutrality
- * Prevents polarization of the cell
- * Completes the circuit
- * Minimize the liquid junction potential

(any two 2x2 = 4 marks)

(ii) Among the following chemicals, identify the most suitable chemical to be used for A. Mention reasons for rejection of each other chemicals. Comment on the conductivity of cation and anion your chosen chemical. (Note that the chloride salts of B and C are used to construct half-cells B and C).

List of chemicals -: AgNO₃ (aq) / CH₃COOH(aq) / KNO₃ (aq) / NaNO₃(aq)

Salt	Suitable / not suitable	reason
AgNO ₃ (aq)	Not Suitable	AgCl will precipitate
CH ₃ COOH(aq)	Not Suitable	Weak electrolyte so increases the liquid junction potential
KNO ₃ (aq)	Suitable	ok
NaNO ₃ (aq)	Not Suitable	Mobility of cataion and anion are considerably different

- * If student has taken NaNO3 also suitable without knowing the mobility of ions then consider it as correct (2x4 = 8 marks)
- (iii) Identify the cathode and the anode of the above cell.

Anode - C(s)

Cathode – B(s) (4x2 = 8 marks)

(iv) Determine the direction of the current flow in the cell if the both ends are connected from a conducting wire.

From C to B (2 marks)

(v) Calculate the electromotive force of the cell.

$$E_{Cell}^{\theta} = E_{Cathode}^{\theta} - E_{anode}^{\theta} \qquad (5 Marks)$$

$$E_{Cell}^{\theta} = (-0.2V) - (-0.4V) = +0.2V \qquad (5 Marks)$$

50

100

100

$$\Delta G^0 = - nFE^0_{cell}$$

F = Faraday constant (96500 C)

Calculate ΔG^0 for the cell using the above relationship

$$\Delta G^{0} = -nFE^{0}_{cell}$$

 $\Delta G^{0} = -3 mol \times 96500 \ C mol^{-1} 0.2V \quad (3+1=4 Marks)$
 $= -57.9 kJ \ mol^{-1} (3 Marks)$

(vii) Complete the following table by using the terms **positive**, **negative spontaneous** and **non** – spontaneous

	Sign of E ⁰ cell	Spontaneity of the reaction
Galvanic cell	Positive	Spontaneous
Electrolytic cell	Negative	Non – Spontaneous

* no marks if the student uses symbols + or -

(1x4 = 4 marks)

- **04.** (a) A, B, and C are structural isomers with the formula C₅H₁₁Br. All three isomers show optical isomerism. A, B, C give D, E, F respectively as main products when reacted with alcoholic KOH. Only D shows diastereomerism. E and F give the same compound G when reacted with HBr. Compound G is a structural isomer of A, B, and C. Compound G is optically inactive. B and C give H and I respectively when reacted with dil.NaOH. H and I reacts with PCC to give J and K. only K decolorizes the colour of H⁺/KMnO₄ solution to give compound L.
 - (i) Identify the structures of A, B, C, D, E, F, G, H, I, J, K and L and draw them in the corresponding boxes given below.

$$H_3C - C = CH - CH_2 - CH_3$$
 $H_3C - CH = C - CH_3$
 CH_3
 CH_3

$$H_3C$$
 - CH - CH_3 H_3C - CH_2 - CH_2C CH_3 H_3C - CH_2 CH_3 H CH_3 H CH_3 H CH_3 H CH_4 H H H

$$C_2H_5-CH-C$$
 OH CH_3 L (4x12=48 Marks)

(ii) What is the colour change you observed on the reaction of K with H⁺/KMnO₄

Purple → Colour

(2 marks)

(b) Write the structure of Y and the reaction conditions of X and Z in the appropriate boxes with respect to the following conversion.

12

8

(4x3=12 marks)

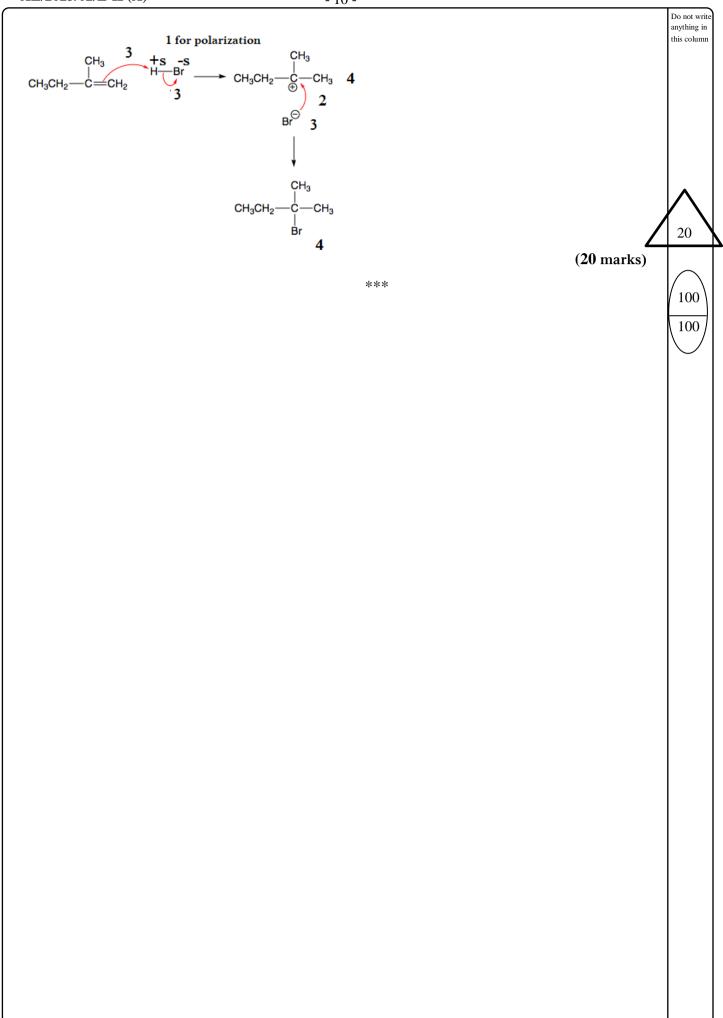
(c) Draw the products given in each reaction below in the corresponding box.

1.
$$H_3C-C-C_1$$

O

 H_3C-C-C_1
 H_3C-C-C_1

O


 H_3C-C-C_1
 H_3C-C-C_1
 H_3C-C-C_1
 H_3C-C-C_1
 H_3C-C-C_1
 H_3C-C-C_1
 H_3C-C-C_1
 H_3C-C-C_1
 H_3C-C-C_1
 H_3C-C_1
 $H_3C-C_$

(c) State whether the following reaction takes place. If so then give the product. If the reaction does not happens then give the reasons.

The <u>lone pair on nitrogen in ethanamide is involved in resonance with the carbonyl group, making it unavailable for reaction with ethyl chloride.</u> Hence, ethanamide does not react with ethyl chloride. (2x2 = 4 marks)

(d) Write the product obtained in the following reaction and write its mechanism.

Province Papers , Model Papers ලබා ගත හැක .

